以下の書籍
を中心に時系列解析を勉強していきます。
前回
5. VARモデル
自己回帰モデルを多変量に拡張したものをベクトル自己回帰()モデルという。モデルを用いる目的は、
- 複数の変数を用いることで予測精度を向上させること
- 変数化の動学的関係の分析を行うこと
の2つにある。特に後者ではグレンジャー因果性、インパルス応答関数や分散分解といった強力なツールを提供できる点が便利である。
5.1 弱定常ベクトル過程
モデルはモデルに含める変数を定めることに始まる。重要なことは、分析者が同額的関係に興味のある変数をモデルに含めることである*1。
また自己相関や定常性などを多変量に拡張する。
まず期待値ベクトルは
で定義される。
次に自己共分散を多変量に拡張した次自己共分散行列は
で定義される。
一般に期待ベクトルと自己共分散関数は時点の関数であるが、これらが期待ベクトルと自己共分散関数がに依存しない場合にそのベクトル過程は弱定常であると言われる。以降、弱定常を仮定し、期待ベクトルを、次自己共分散行列をと書くことにする。
自己共分散行列は単位に依存する(=変数間で水準感が相違し得る)ため、異時点における2変数間の関係の強弱を判断することができない。そこで自己共分散行列を基準化した自己相関行列を
で定義する。を用いれば、
と書くこともできる。
最後にホワイトノイズを拡張する。ベクトル過程が、すべての時点において
を満たすとき、をベクトルホワイトノイズという。が分散共分散行列を持つベクトルホワイトノイズであることをと書くことにする。
5.1.2 コヒーレンシー
クロススペクトルは、
とおけば、
と表現できる。このときを振幅スペクトル、を位相スペクトルという。また
は時系列の周波数における周波数成分間の相関係数の二乗に相当する量でコヒーレンシーと呼ぶ。
ホワイトノイズのの各成分が互いに無相関で、その分散共分散行列が対角行列となる場合には、第成分のパワースペクトルはで複素共役を表す記号だとして
と書くことができる。これは第成分の周波数での変動のパワースペクトルが個のノイズ源の影響に分解でき、その影響の大きさがで表されることを示している。このため
とおくと、これはの周波数における変動のうちホワイトノイズに起因する割合を表し、相対パワー寄与度と呼ばれる。
5.2 VARモデル
ベクトル自己回帰()モデルはモデルをベクトルに拡張したもので、モデルはを定数と自身の期前の値に回帰したモデル、すなわち
というモデルである。
モデルも常に定常とは限らず、特性方程式
のすべての根の絶対値がよりも大きければ定常性を持つ。また定常過程は過程に書き換えることができる。
モデルの期待値は
で与えられる。また自己共分散は方程式
を解くことで得られる。
5.2.1 VARモデルの推定
モデルの各方程式は同時点のその他の変数を含まないため、同時方程式モデルではない。ただし誤差項を通じた相関により関係が無いわけではなく、そのために見かけ上無関係な回帰モデル(:seemingly unrelated regression model)と呼ぶ。
一般的には、モデルは誤差項の相関を考慮するためにすべての回帰式を同時に推定する必要がある。しかしモデルは各方程式を個別に最小二乗法により推定した推定量が漸近有効性を持つことが知られている。
次数の選択には情報量基準を用いる方法があるが、パラメータ数が多いために有意でないパラメータも含める可能性もある。そのため経験論から決めることもある。
5.2.2 VMAモデル、VARMAモデル
多変量時系列過程が方程式
を満たし、さらに
- が正則な分散共分散行列を持つホワイトノイズ
- において
を満たすとき、は多変量モデルに従うという。のときモデルに帰着する。
モデルやモデルは定義できるものの、実用上用いられない。これは、モデルやモデルはパラメータ推定が困難であること、またモデルはパラメータが多いために相当の説明力を持つことが多いことに起因する。