統計学に習熟するには線形代数の習得が不可欠である。が、初等的な線形代数ではカバーしきれないような分野も存在する。そこで以下の参考書
を基により高等な線形代数を学ぶ。
2. ベクトル空間
今回はベクトル空間を扱う。
統計学においてベクトル空間は統計学で推定や仮説検定での重要な応用性を有している。また線形独立・線形従属は行列の階数の決定や理解に役立つ。
ただしベクトル空間の基礎は過去稿と内容が大きく重複するため、内容を大幅に省略し、本書に独自ないしこの後の頁に関係し得る点のみ記述していく。
2.1 非直交変換
の部分空間に対して線形変換を考える。
が正則行列でであるとき、はからへの一対一変換を定義する。任意のはという座標空間上の1点を与える。
一方でがの別の基底であるならば、が存在し、およびに対して
が成り立つ。すなわちは座標軸に対応する点の座標を与える。基準座標系から座標軸で定義される1つの座標系への変換はとするとき、変換で与えられる。原点からまでのEuclid距離の二乗、すなわち
は、行列あるいは同等にが直交行列であることが、原点からまでのEuclid距離とこれが等しくなることの必要十分条件である。この場合、はの正規直交基底を形成する。
直交変換は一般的に用いられる変換だが、非直交変換が有用となる場合もある。
例:
3次元ベクトルを考え、それらが同じ正定値共分散行列をもつ分布からの観測ベクトルだとする。これらの相違度合いに興味がある場合、内にこれらの点を描くことは有用である。しかしが単位行列でない場合、Euclid距離を用いるのは適切とは言い難く、観測された個の点の間の違いを比較し解釈するのは困難になる。しかし適切な変換を行うことでこの困難を解決できる。
は正定値であるから、正則行列が存在し、が成り立つ。とすると、のMahalanobis距離はとなり、一方での分散は
である。すなわちという変換は各点間の距離の適切な速度がEuclid距離関数となるようなベクトルを生成する。
例:中心化
についてとするとき、
の各成分の平均はである。この変換は各説明変数を中心化するために用いられる。
重回帰モデルにおける利用例を述べる。は以下のように表現できる。
ここでであり、である。の列はに対して直交しているから、の最小二乗推定量は
のように単純化される。したがってである。推定量は行列の行を構成する個のベクトルから計算される標本共分散行列によって表現することができる。この標本共分散行列をとし、
のように分割すると、となり、であるから、
となるから、を得る。
一方で元の回帰モデルに対するその他の調整方法には説明変数の標準化がある。この場合、となる。ここでであり、である。最小二乗推定量は
と書ける。ここで行列の列を構成する個のベクトルから計算される相関行列をの場合と同様に分割した。
上述した説明変数の中心化はの列に対する線形変換が関わっている。ある状況ではの行について線形変換を実行した方が有利な場合もある。たとえばを正則行列とし、と定義すると、回帰モデル
は
と表される。ここでである。2番目のモデルは最初のモデルとは異なる説明変数の組を用いている。すなわちその番目の説明変数は最初のモデルの説明変数との第列によって与えられる係数との線形結合である。しかし2つのモデルはデータに適合させた後の値において同一の結果を与える。
実際、
とすると、であり、2番目のモデルからの予測値ベクトル
が最初のモデルから得られるものと同一となる。
例:重み付き最小二乗法
重回帰モデル
を考える。ここでとする。この場合、の推定量はここでもの推定量であるが、のときに成り立つような最適な性質は保持されない。ここではが無相関であるものの、その分散がすべて同一というわけではない、すなわちは既知ような状況を考える。このような状況での回帰は重み付き最小二乗回帰と呼ぶ。
行列と定義し、回帰モデルに[tex:C^{-\frac{1}{2}}を左から掛けることで、を得る。新たにとおき
とおく。このときの共分散行列は
である。したがって変換後のモデルには通常の最小二乗法を適用できるから、
と表現でき、それは
で得られる。
線形変換に関する良く知られた適用例は、既知の定数から成る行列とベクトルならびに変数ベクトルがあるときにを満たすようなを決定する問題である。